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Abstract The fatty acid desaturation and elongation

reactions catalyzed by Trichoderma sp. 1-OH-2-3 were

investigated. This strain converted palmitic acid (16:0)

mainly to stearic acid (18:0), and further to oleic acid (c9-

18:1), linoleic acid (c9,c12-18:2), and a-linolenic acid

(c9,c12,c15-18:3) through elongation, and D9, D12, and

D15 desaturation reactions, respectively. Palmitoleic acid

(c9-16:1) and cis-9,cis-12-hexadecadienoic acid were also

produced from 16:0 by the strain. This strain converted

n-tridecanoic acid (13:0) to cis-9-heptadecenoic acid

and further to cis-9,cis-12-heptadecadienoic acid through

elongation, and D9 and D12 desaturation reactions,

respectively. trans-Vaccenic acid (t11-18:1) and trans-12-

octadecenoic acid (t12-18:1) were desaturated by the strain

through D9 desaturation. The products derived from t11-

18:1 were identified as the conjugated linoleic acids

(CLAs) of cis-9,trans-11-octadecadienoic acid and trans-

9,trans-11-octadecadienoic acid. The product derived from

t12-18:1 was identified as cis-9,trans-12-octadecadienoic

acid. cis-6,cis-9-Octadecadienoic acid was desaturated

to cis-6,cis-9,cis-12-octadecatrienoic acid by this strain

through D12 desaturation. The broad substrate specificity

of the elongation, and D9 and D12 desaturation reactions of

the strain is useful for fatty acid biotransformation.

Keywords Desaturation � Elongation � Polyunsaturated

fatty acid � Conjugated linoleic acid � Trichoderma sp.

Introduction

Polyunsaturated fatty acids (PUFA) have various physio-

logical effects. For example, those of the C-20 series such as

dihomo-c-linolenic acid (DGLA, c8,c11,c14-20:3), arachi-

donic acid (AA, c5,c8,c11,c14-20:4), and eicosapentaenoic

acid (EPA, c5,c8,c11,c14,c17-20:5) are of interest as they

are precursors for prostaglandins, thromboxanes, leukotri-

enes, and prostacyclins [1]. In addition, conjugated PUFAs

(CPUFAs) have also attracted much attention as a novel

type of biologically beneficial functional lipid in the last

two decades. In particular, conjugated linoleic acid (CLA,

18:2 with conjugated double bonds) has been the most

intensively investigated and was revealed to have beneficial

effects on human and animal health [2].

Since natural sources rich in these PUFAs and CPUFAs

are limited, recent investigations have been focused on

microorganisms as alternative sources of them. Several

groups have started to screen for microorganisms capable

of accumulating lipids containing PUFAs and CPUFAs in
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order to obtain more suitable sources for large-scale

preparation of important nutritional components [3–5].

Previously, we found that a filamentous fungus, Morti-

erella alpina 1S-4 isolated from soil, is a potent producer

of triacylglycerols containing AA, DGLA and EPA [6–8].

Mutants that are considered to be defective in (or to have

low activity of) D5, D6, D12, D9 or x3 desaturase have

been derived from M. alpina 1S-4 [9–13], and many kinds

of PUFA have been produced by means of these mutants.

In fact, we have succeeded in their application to the

industrial production of a triacylglycerol with a high con-

tent of AA [14]. Other than Mortierella sp., some groups

investigated fatty acid compositions of Trichoderma sp.

and reported that they accumulate unusual fatty acids such

as hydroxylated fatty acids and conjugated fatty acids

although the chemical structures of these fatty acids are

still ambiguous[5, 15, 16]. We also isolated Trichoderma

sp. AM076 from fresh water and revealed that the strain

accumulated rarely occurring cis-9,cis-12-hexadecadienoic

acid (c9,c12-16:2), when grown with palmitoleic acid

(16:1) [17]. Moreover, the D9, D12, and D15 desaturases of

the strain seemed to act on a variety of fatty acids [18].

In this study, we investigated the specificity of the

desaturation and elongation reactions catalyzed by a

mutant Trichoderma strain for its application for the pro-

duction of PUFAs and CPUFAs. In particular, we focused

on mutant strain 1-OH-2-3, which was derived from

Trichoderma sp. AM076 exhibiting a high level of lipid

accumulation, and evaluated its potential as a catalyst for

fatty acid biotransformation.

Experimental Procedures

Chemicals

n-Tridecanoic acid (13:0), n-pentadecanoic acid (15:0),

n-heptadecanoic acid (17:0), and a mixture of trans-

vaccenic acid (t11-18:1) and trans-12-octadecenoic acid

(t12-18:1) were purchased from Tokyo Chemical Industry

Co., Ltd. (Tokyo, Japan). Mead acid (MA, c7,c10,c13-20:3),

AA, cis-6,cis-9,cis-12-octadecatrienoic acid ethyl ester

(c6,c9,c12-18:3EE), and vaccenic acid (c11-18:1) were

obtained from Funakoshi (Tokyo, Japan). cis-6,cis-9-Octa-

decadienoic acid ethyl ester (c6,c9-18:2EE) was obtained

from Suntory Ltd. (Osaka, Japan). All other reagents were of

analytical grade.

Microorganisms and Cultivation

The Trichoderma species (FA607, FA608, FA610, FA611,

AM076, TU42 and 1-OH-2-3) were obtained from

the AKU culture collection (Div. Appli. Life Sci., Kyoto

University). Strains TU42 and 1-OH-2-3 were PUFA-

accumulating mutants derived from Trichoderma sp.

AM076 by nitrosoguanidine mutagenesis [17, 18]. All

strains were inoculated into 4 ml of GY medium (1%

glucose and 0.5% yeast extract; Oriental, Osaka, Japan),

pH 6.0, with or without each fatty acid substrate, 0.80% (w/

v), in a 20-ml Erlenmeyer flask, and then incubated with

reciprocal shaking (120 rpm) at 28 �C for 7 days. All

experiments were carried out in triplicate, and the averages

of three separate experiments, which were reproducible

within ±10%, are presented in the figures and tables.

Extraction, Esterification and Purification

The mycelia were harvested by filtration washed with

0.85% NaCl, and then dried at 100 �C overnight. The dried

cells were directly transmethylated with 10% methanolic

HCl, and the resultant fatty acid methyl esters were

extracted with n-hexane and then analyzed by gas–liquid

chromatography (GLC) [19]. The esters were quantitated

using a Shimadzu GC-17A equipped with a flame ioniza-

tion detector and a split injection system (split ratio, 1/50),

and fitted with a capillary column (HR-SS-10,

50 m 9 0.25 mm I.D.; Shinwa Kako, Kyoto, Japan). The

column temperature was initially 180 �C, and then was

raised to 220 �C at the rate of 2 �C/min and maintained at

that temperature for 5 min. The injector and detector were

operated at 250 �C. Helium was used as the carrier gas at

225 kPa/cm2.

After conversion of the reaction products to their methyl

esters, they were separated by reverse-phase high-perfor-

mance liquid chromatography (HPLC, LC-10A; Shimadzu

Co., Kyoto, Japan) on a Cosmosil 5C18 AR column

(20 9 250 mm; Nacalai Tesque, Kyoto, Japan). The

mobile phase was acetonitrile-H2O (8:2 v/v) at the flow

rate of 3.0 ml/min, and the effluent was monitored by

means of ultraviolet detection (205 nm). The chemical

structures of the fatty acid derivatives were determined by

mass spectroscopy (MS), proton nuclear magnetic reso-

nance (1H–NMR) spectroscopy, 1H–1H chemical shift

correlation spectroscopy (1H–1H COSY), 1H clean-total

correlation spectroscopy (TOCSY), and two-dimensional

nuclear Overhauser effect spectroscopy (NOESY).

Preparation of Free Fatty Acids

Free fatty acids were prepared by heating the fatty acid

methyl esters (50 mg) in a mixture of 5.0 ml of 7.0 N

sodium hydroxide and 5.0 ml of methanol in a capped tube.

After being heated in a boiling water bath for 1 h, the

solution was acidified to pH 2.0 with 10% (w/v) sulfuric

acid in water. The free fatty acids were extracted with

diethylether. The organic extract was washed with water
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and dried over anhydrous Na2SO4, and then the solvent was

removed under vacuum with a rotary evaporator.

Preparation of Pyrrolidide Fatty Acids

Pyrrolidide derivatives were prepared by direct treatment

of the isolated methyl esters with pyrrolidine-acetic acid

(10:1 v/v) in a capped tube for 1 h at 100 �C, followed by

extraction from the acidified solution according to the

method of Andersson and Holman [20]. The dichloro-

methane extract was washed with water and dried over

anhydrous Na2SO4, and then the solvent was removed

under vacuum with a rotary evaporator.

GC–MS Analysis

GC–MS QP5050 with GC-17A (Shimadzu Co.) was used

for mass spectral analyses. The GLC separation of fatty

acid methyl esters was performed on a HR-SS-10 column

as described above at the same temperature. MS was per-

formed in the electron impact mode at 70 eV with a source

temperature of 250 �C. Split injection (split ratio, 1/50)

was performed with the injector port at 250 �C. The GLC

separation of fatty acid pyrrolidide derivatives was per-

formed on a HR-1 column (25 m 9 0.5 mm I.D., Shinwa

Kako) at 300 �C.

MS–MS Analysis

MS–MS analyses were performed on the free acids of the

fatty acids with a Tandem Mass Spectrometer, JEOL

HX110A/HX110A (Jeol Ltd, Tokyo, Japan). The ioniza-

tion method comprised fast atom bombardment (FAB) and

the accelerating voltage was 3 kV. Glycerol was used as

the matrix.

1H-NMR, 1H-1H COSY, NOESY and TOCSY

Analyses

All NMR experiments were performed on a JEOL EX-400

(400 MHz at 1H; Jeol Ltd.), and chemical shifts were

assigned relative to the solvent signal. The fatty acid

methyl esters were dissolved in dichloromethane-d2 and the

diameter of the tube was 5 mm.

Results and Discussion

Profiles of Fatty Acids Synthesized de novo

by Trichoderma sp.

Table 1 shows the amounts and compositions of fatty acids

synthesized de novo by the Trichoderma species. In strain

1-OH-2-3, c9-18:1 was a major unsaturated fatty acid

accumulated due to a leaky defect in D12 desaturation.

The strain 1-OH-2-3, however, accumulated much larger

amounts of fatty acids compared with the others. Tricho-

derma sp. 1-OH-2-3 was selected for the following

experiments to investigate the substrate specificity of

desaturation and elongation reactions.

Fatty Acid Transformation by Trichoderma

sp. 1-OH-2-3

13:0 Transformation

As shown in (Fig. 1b), four unknown peaks were detected

on GLC when 13:0 was added to the medium. Based on

comparison of their retention times on GLC and HPLC

with those for standards, and on the results of mass spectral

analysis, these unknown fatty acids were identified as 15:0,

Table 1 Fatty acid production and composition of Trichoderma species and mutants

Strains Total FA (mg g-1 dry cell) FA composition (%)a

16:0 16:1 18:0 c9-18:1 c9,c12-18:2 c9,c12,c15-18:3

FA607 44.7 36.4 2.7 3.3 9.9 38.4 9.3

FA608 50.4 58.4 6.5 4.2 9.7 18.4 2.8

FA610 16.7 41.7 1.5 2.0 7.0 38.5 9.3

FA611 41.9 49.1 1.9 4.6 12.6 27.5 4.3

TU42 31.7 54.7 ND 3.4 12.2 23.7 6.0

AM076 18.4 72.3 ND 5.4 7.3 15.0 ND

1-OH-2-3 102.9 47.3 4.1 3.7 22.3 18.9 3.7

All strains were grown in GY medium without fatty acid substrate at 28 �C for 1 week as described under ‘‘Experimental Procedures’’

ND not detected
a FA fatty acid, 16:0 palmitic acid, 16:1 palmitoleic acid, 18:0 stearic acid, c9-18:1 oleic acid, c9,c12-18:2 linoleic acid, c9,c12,c15-18:3 a-

linolenic acid
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17:0, c9-17:1, and c9,c12-17:2. But the D15 desaturation

product, c9,c12,c15-17:3, was not detected. These results

suggest that 13:0 is elongated to 15:0, and further to 17:0.

The resulting 17:0 is desaturated to c9-17:1 through D9

desaturation, and further to c9,c12-17:2 through D12

desaturation.

c6,c9-18:2 Transformation

An unknown peak was detected on GLC, when c6,c9-18:2

was added (Fig. 1c). Based on comparison of its retention

times on GLC and HPLC to those for standards, and on the

result of mass spectral analysis, this unknown fatty acid

was identified as c6,c9,c12-18:3. This suggests that c6,c9-

18:2 is desaturated to c6,c9,c12-18:3 through D12 desatu-

ration. The D15 desaturation product, c6,c9,c12,c15-18:4,

was not detected.

t11-18:1 and t12-18:1 Transformation

Unknown peaks, a, b, and c, were detected on GLC, when a

mixture of t11-18:1 and t12-18:1 was added to the medium

(Fig. 1d). These unknown fatty acid methyl esters were

purified by HPLC and then subjected to structural deter-

mination by MS and NMR analysis. Pyrrolidide derivative

of compound (a) showed a molecular weight of 333

(Fig. 2a). This result suggested that compound (a) is a C18

fatty acid containing two double bonds. Intervals of 12

atomic mass units (amu) were found between m/z 196 (C8)

and 208 (C9), and m/z 236 (C11) and m/z 248 (C12),

indicating double bonds at D9 and D12, respectively. Based

on these results, and considering that fatty substrates

comprise a mixture of t11-18:1 and t12-18:1, and that

desaturases in microorganisms usually convert C–C single

bonds to C=C double bonds in the cis conformation,

compound (a) was deduced to be c9,t12-18:2.

The pyrrolidide derivative of compound (b) showed a

molecular weight of 333 (Fig. 2b). This result suggested

that compound (b) is a C18 fatty acid containing two

double bonds. The FAB-MS data for the free fatty acids

of compound (b) revealed a molecular weight of m/z 280

([M-H]?, 279). Typical fragments (m/z) for compound (b)

were 127, 141, 167, 193, 207 and 208 (data not shown).

The m/z 141, 167, and 193 fragments were derived

through cleavage of single bonds between C8–C9, C10–

C11, and C12–C13, numbered from the carboxyl group.

The m/z 127 and 207 fragments, derived through cleavage

of the single bond between the a and b positions from the

double bond, were clearly detected. Hence, compound (b)

was identified as a 9, 11 positional isomer of octadeca-

dienoic acid. Furthermore, 1H–NMR, 1H–1H COSY,

NOESY, and TOCSY analyses were carried out to

determine the geometric configuration of compound (b)

(data not shown). Consequently, the data showed that

compound (b) was c9,t11-18:2, a CLA isomer, which we

reported previously to be produced by lactic acid bacteria

from linoleic acid [21].

The pyrrolidide derivative of compound (c) likewise

showed a molecular weight of 333 (Fig. 2c). This result

again suggests that compound (c) is a C18 fatty acid con-

taining two double bonds. Based on the composition

determined from mass spectra, and the retention time on

GLC relative to those of standard CLA (Sigma, USA) and

CLA prepared by Lactobacillus plantarum AKU 1009a

[21], compound (c) was strongly suggested to be t9,t11-

18:2.

Control 13:0

16:0

18:0 c9-18:1
c9,c12-18:2

c9,c12,c15-18:3

13:0

c6,c9-18:2

a

b
c

c9-18:1
+t11-18:1
+t12-18:1

c9-16:1

c9-18:1

c6,c9-18:2

c6,c9,c12-18:3

t11-18:1+t12-18:1 c11-18:1(c) (d) (e)

(a) (b)

15:0

c9-18:1
c9,c12-18:2

c9-17:117:0

+c11-18:1

c9,c12-17:2

Fig. 1 GLC chromatogram of

methyl esters of standard fatty

acids (a) and those of fatty acids

produced from 13:0 (b),

c6,c9-18:2 (c), a mixture of

t11-18:1 and t12-18:1 (d), and

c11-18:1 (e) by Trichoderma sp.

1-OH-2-3
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c11-18:1 Transformation

An unknown peak was detected on GLC when c11-18:1

was added (Fig. 1e). Based on the retention times on GLC

and HPLC relative to those of standards, and the results of

mass spectra analysis, this unusual fatty acid was identified

as c9-16:1 (data not shown). The amount of c9-16:1

derived from c11-18:1 was much higher than that of

de novo synthesized c9-16:1 (Fig. 1a, e). These results

suggest that c11-18:1 is converted to c9-16:1 through

b-oxidation. The D9 desaturation product, c9,c11-18:2, was

not detected.

Production of Various Fatty Acids

Table 2 shows the amounts of typical fatty acids produced

by strain 1-OH-2-3 for 7 days cultivation. When 0.80% of

17:0 was added to the medium, 40 lg/ml of c9-17:1 and

15 lg/ml of c6,c9-17:2 were produced, the proportions as

to the total fatty acids being 0.67 and 0.26%, respectively.

From 0.80% of c6,c9-18:2EE, 18 lg/ml c6,c9,c12-18:3

was produced, the proportion as to the total fatty acids

being 2.49%. As to the production of CLA isomers, 45 lg/

ml of c9,t11-18:2 and 19 lg/ml of t9,t11-18:2 were pro-

duced from 0.80% of t11-18:1 added to the medium, the

proportions as to the total fatty acids being 0.70 and 0.30%,

respectively. These results indicated that Trichoderma sp.

1-OH-2-3 exhibits desaturation activity with flexible sub-

strate specificity, especially for D9 and D12 desaturation.

Previously, we reported that Trichoderma sp. AM076

produced c9,c12-16:2 and c9,c12,c15-16:3 from c9-16:1

and c9,c12-16:2 added to the culture medium, respectively

[17, 18]. These results indicated that Trichoderma sp. have

unique fatty acid transformation activities. In this report,

we investigated the substrate specificity of the desaturation

and elongation reactions catalyzed by a mutant strain
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Fig. 2 GC–MS spectra of

pyrrolidide derivatives of

compounds (a), (b), and (c)
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1-OH-2-3 accumulating much higher amounts of fatty acid

than parental strain.

The transformation of fatty acids by the mutant strain

can be summarized as follows (Fig. 3): 13:0 is transformed

to 15:0 and further to 17:0 through elongation. 17:0 is

transformed to c9-17:1 and further to c9,c12-17:2 through

D9 and D12 desaturation, respectively. c9,c12-17:2 is not

further converted to c9,c12,c15-17:3 through D15 desatu-

ration. c6,c9-18:2 is transformed to c6,c9,c12-18:3 through

D12 desaturation. c6,c9,c12-18:3 was not converted to

c6,c9,c12,c15-18:4 through D15 desaturation. t11-18:1 was

transformed to c9,t11-18:2 and t9,t11-18:2 through D9

desaturation. t9,t11-18:2 might be produced from c9,t11-

18:2 through spontaneous chemical isomerization or by the

cis-trans isomerase of this strain. t12-18:2 was desaturated

to c9,t12-18:2 through D9 desaturation. t11-18:1 was

converted to CLA by strain 1-OH-2-3, while c11-18:1 was

scarcely transformed.

In conclusion, we revealed that the substrate specificity

of elongation, and D9 and D12 desaturation by mutant

strain 1-OH-2-3 are broad and that the D9 desaturase of this

strain showed an ability to produce specific CLA isomers

(c9,t11-18:2 and t9,t11-18:2).

Recently, conjugated polyunsaturated fatty acids have

attracted considerable attention because of their potentially

beneficial effects. We reported that some lactic acid bac-

teria could convert linoleic acid to specific CLA isomers

c9,t11-18:2 and t9,t11-18:2 [3]. Among these isomers,

c9,t11-18:2 has been suggested to be one of the most

important isomers in terms of biological activity because it

is the major isomer in naturally occurring dairy products

and it is incorporated into the phospholipid fraction of

tissues of animals fed a mixture of CLA isomers [22].

Accordingly, methods for producing specific CLA isomers

are strongly desired to evaluate the function of CLA iso-

mers accurately. Though t11-18:1 (trans-vaccenic acid) is

Table 2 Transformation of fatty acids by Trichoderma sp. 1-OH-2-3

Additional substrate Newly generated fatty acids from added substrate (lg ml-1)

c9-17:1 c9,c12-17:2 c6,c9,c12-18:3 c9,t11-18:2 t9,t11-18:2 Others

t11-18:1 ND ND ND 45 19 35

c6,c9-18:2EE ND ND 18 ND ND ND

17:0 40 15 ND ND ND ND

The fungus was grown in GY medium supplemented with 0.8% of each substrate for 7 days

ND not detected

COOH

c11-18:1

β-OX

COOH

COOH

t12-18:1

c9,t12-18:2

∆9

COOH

COOH

c6,c9-18:2

c6,c9,c12-18:3

∆12

COOH

COOH

COOH
t11-18:1

c9,t11-18:2

t9,t11-18:2

∆9

COOH
16:0

COOH
c9-16:1

COOH
c9,c12-16:2

COOH
c9,c12,c15-16:3

∆9

∆12

∆15

COOH
18:0

COOH
c9-18:1

COOH
c9,c12-18:2

COOH
c9,c12,c15-18:3

∆9

∆12

∆15

COOH

COOH

COOH

COOH
15:0

COOH
13:0

17:0

c9-17:1

c9,c12-17:2

∆9

∆12

EL

EL

EL

Fig. 3 Proposed pathway for FA transformation by Trichoderma sp.

1-OH-2-3. EL elongation, D15 D15 desaturation, D12 D12 desatura-

tion, D9 D9 desaturation, b-OX b-oxidation. The gray arrows indicate

the de novo biosynthetic pathway. The black arrows indicate our

previous observations [18]
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converted to c9,t11-18:2 by mammalian cells through D9

desaturation, there have not been any reports that fungi can

produce CLA isomers from t11-18:1 [23]. This is the

important report of the production of specific CLA isomer,

c9,t11-18:2, by fungi through D9 desaturation although

further studies to increase the productivity and the selec-

tivity are necessary.
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